

Uncertainty Quantification and Reliability Analysis-Based Design Optimization Capabilities in DAKOTA

Brian M. Adams
Sandia National Laboratories
Optimization and Uncertainty Quantification
(with Michael S. Eldred and Laura P. Swiler)

http://endo.sandia.gov/DAKOTA

9th Copper Mountain Conference on Iterative Methods
April 7, 2006

Why Uncertainty Quantification (UQ)?

Need to design systems given <u>uncertain/variable</u> material properties, manufacturing processes, operating conditions, models, measurements...

Uncertainty must be properly modeled to quantify risk and design <u>robust and reliable</u> systems.

Aleatory / irreducible

inherent variability with sufficient data (probabilistic models)

VS.

Epistemic / reducible

uncertainty from lack of knowledge (non-probabilistic models)

Employ a UQ-based approach to optimization under uncertainty (OUU)

- safety factors, multiple operating conditions, local sensitivities insufficient
- tailor OUU methods to strengths of different UQ approaches

OUU methods encompass both:

design for robustness (moment statistics: mean, variance) design for reliability (tail statistics: probability of failure)

Uncertainty-Aware Design

Rather than designing and then postprocessing to evaluate uncertainty...

Standard NLP

minimize
$$f(d)$$

subject to $g_l \leq g(d) \leq g_u$
 $h(d) = h_t$
 $d_l \leq d \leq d_u$

...actively design while accounting for uncertainty/reliability metrics

Augment with general response statistics \mathbf{s}_u (e.g. μ , σ , or reliability $\mathbf{z}/\beta/\mathbf{p}$) with linear map

minimize
$$f(d) + Ws_u(d)$$

subject to $g_l \leq g(d) \leq g_u$
 $h(d) = h_t$
 $d_l \leq d \leq d_u$
 $a_l \leq A_i s_u(d) \leq a_u$
 $A_e s_u(d) = a_t$

Focus on large-scale simulation-based engineering applications:

- > mostly PDE-based, often transient, some agent-based/discrete event models
- > response mappings (fns. and constraints) are nonlinear and implicit

Outline

- Motivation
- DAKOTA toolkit overview
- Uncertainty quantification (UQ) forward propagation:
 - Sampling-based
 - Reliability analysis
- Enriching optimization with UQ
- Example problem MEMS
- Conclusion

Goal: answer fundamental engineering questions

- What is the best design? How safe is it?
- How much confidence do I have in my answer?

Challenges

- Software: reuse tools and common interfaces
- Algorithm R&D: nonsmooth/discontinuous/multimodal, mixed variables, unreliable gradients, costly sim. failures
- Scalable parallelism: ASCI-scale apps & architectures

Impact: Tool for DOE labs and external partners, broad application deployment, free via GNU GPL (~3000 download registrations)

Nominal

Optimized

DAKOTA Framework

Outline

- Motivation
- DAKOTA toolkit overview
- Uncertainty quantification (UQ) forward propagation:
 - Sampling-based
 - Reliability analysis
- Enriching optimization with UQ
- Example problem MEMS
- Conclusion

Uncertainty Quantification

Forward propagation: quantify the effect that uncertain input variables have on model output

Input Computational Performance Model Measures

- **GOALS:**
- determine variance of outputs based on uncertain inputs (UQ)
- identify inputs whose variances contribute most to output variance (global sensitivity analysis)

Uncertainty Quantification Methods

Active UQ development in DAKOTA (new, developing, planned)

Sampling: LHS/MC, QMC/CVT, Bootstrap/Importance/Jackknife
 Gunzburger collaboration

Reliability: Evaluate probability of attaining specified outputs / failure

MVFOSM, x/u AMV, x/u AMV+, FORM (RIA/PMA mappings), MVSOSM, x/u AMV², x/u AMV²+, TANA, SORM (RIA/PMA)

Renaud/Mahadevan collaborations

SFE: Polynomial chaos expansions (quadrature/cubiture extensions).

Ghanem (Walters) collaborations

Metrics: Importance factors, partial correlations, main effects, and

variance-based decomposition.

Epistemic: 2nd-order probability: combines epistemic and aleatory;

Dempster-Schafer: basic probability assignment (intervals);

Bayesian

Sampling Capabilities

Parameter Studies

- perturb each variable
- "one-off" or one at a time
- simple but inefficient

Design of Computer Experiments (DACE) and Design of Experiments (DOE)

- Box-Behnken, Central Composite
- factorial and fractional designs
- orthogonal arrays

Sampling Methods – typical for forward UQ propagation

- Standard Monte Carlo
- Pseudo-Monte Carlo: Latin Hypercube Sampling (samples from equi-probability bins for all 1-D projections)
- Quasi-Monte Carlo (low discrepancy): Hammersley, Halton
- Centroidal Voroni Tesselation (CVT): approx. uniform samples over arbitrarily shaped parameter spaces

Analytic Reliability Methods for UQ

- Define limit state function g(x) for response metric (model output) of interest, where x are uncertain variables.
- Reliability methods either
 - map specified response levels $g(x) = \overline{z}$ (perhaps corr. to a failure condition) to reliability index β or probability ρ ; or
 - map specified probability or reliability levels to the corresponding response levels.

Mean Value (first order, second moment – MVFOSM)

determine mean and variance of limit state:

$$\sigma_g = g(\mu_{\mathbf{x}})$$

$$\sigma_g = \sum_i \sum_j Cov(i,j) \frac{dg}{dx_i} (\mu_{\mathbf{x}}) \frac{dg}{dx_j} (\mu_{\mathbf{x}})$$

$$\bar{z} \to p, \beta \begin{cases} \beta_{cdf} = \frac{\mu_g - \bar{z}}{\sigma_g} \\ \beta_{ccdf} = \frac{\bar{z} - \mu_g}{\sigma_g} \end{cases} \quad \bar{p}, \bar{\beta} \to z \begin{cases} z = \mu_g - \sigma_g \bar{\beta}_{cdf} \\ z = \mu_g + \sigma_g \bar{\beta}_{ccdf} \end{cases}$$
Simple approximation but widely upon the properties of the properties of

approximation, but widely used

Analytic Reliability: MPP Search

Perform optimization in u-space (std normal space corr. to uncertain x-space) to determine Most Probable Point (of response or failure occurring)

Reliability Index Approach (RIA)

minimize $\mathbf{u}^T \mathbf{u}$ subject to $G(\mathbf{u}) = \bar{z}$

Find min dist to G level curve Used for fwd map $z \rightarrow p/\beta$

...should yield better estimates of reliability than Mean Value methods

Performance Measure Approach (PMA)

minimize $\pm G(\mathbf{u})$ subject to $\mathbf{u}^T \mathbf{u} = \bar{\beta}^2$

Find min G at β radius Better for inv map $p/\beta \rightarrow z$

Reliability: Algorithmic Variations

Many variations possible to improve efficiency, including in DAKOTA...

• <u>Limit state linearizations</u>: use a surrogate for the limit state during optimization

AMV:
$$g(\mathbf{x}) = g(\mu_{\mathbf{x}}) + \nabla_x g(\mu_{\mathbf{x}})^T (\mathbf{x} - \mu_{\mathbf{x}})$$

u-space AMV: $G(\mathbf{u}) = G(\mu_{\mathbf{u}}) + \nabla_u G(\mu_{\mathbf{u}})^T (\mathbf{u} - \mu_{\mathbf{u}})$
 $AMV+: g(\mathbf{x}) = g(\mathbf{x}^*) + \nabla_x g(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*)$
u-space AMV+: $G(\mathbf{u}) = G(\mathbf{u}^*) + \nabla_u G(\mathbf{u}^*)^T (\mathbf{u} - \mathbf{u}^*)$
FORM: no linearization

(also 2nd order approximations – can use full or quasi-Newton Hessians in optimization)

Integrations (in u-space to determine probabilities):

1st-order:
$$\begin{cases} p(g \le z) &= \Phi(-\beta_{cdf}) \\ p(g > z) &= \Phi(-\beta_{ccdf}) \end{cases}$$
 2nd-order:
$$\begin{cases} p = \Phi(-\beta) \prod_{i=1}^{n-1} \frac{1}{\sqrt{1 + \beta \kappa_i}} \\ \text{curvature correction} \end{cases}$$

MPP search algorithm

[HL-RF], Sequential Quadratic Prog. (SQP), Nonlinear Interior Point (NIP)

Warm starting

When: AMV+ iteration increment, $z/p/\beta$ level increment, or design variable change What: linearization point & assoc. responses (AMV+) and MPP search initial guess

Outline

- Motivation
- DAKOTA toolkit overview
- Uncertainty quantification (UQ) forward propagation:
 - Sampling-based
 - Reliability analysis
- Enriching optimization with UQ
- Example problem MEMS
- Conclusion

Optimization Under Uncertainty

nested paradigm

optimize, accounting for uncertainty metrics

(use any of surveyed UQ methods)

min
$$f(d) + Ws_u(d)$$

s.t. $g_l \leq g(d) \leq g_u$
 $h(d) = h_t$
 $d_l \leq d \leq d_u$
 $a_l \leq A_i s_u(d) \leq a_u$
 $A_e s_u(d) = a_t$

Input design parameterization

- Uncertain variables augment design variables in simulation
- Inserted design variables: an optimization design variable may be a parameter of an uncertain distribution, e.g., design the mean of a normal.

Response metrics

Robustness:

min/constrain σ^2 or G(β) range

Reliability:

max/constrain *p*/β (minimize failure)

Combined/other:

pareto tradeoff, LSQ: model calibration under uncertainty

Sample of RBDO Algorithms

Bi-level RBDO

- Constrain RIA $z \rightarrow p/\beta$ result
- Constrain PMA $p/\beta \rightarrow z$ result

RIA RBDO
$$\begin{cases} \text{minimize} & f \\ \text{subject to} & \beta \geq \bar{\beta} \\ \text{or} & p < \bar{p} \end{cases} \quad \text{PMA} \begin{cases} \text{minimize} & f \\ \text{RBDO} \end{cases}$$
 subject to $z \geq \bar{z}$

reliability sensitivities avoid numerical differencing at design level

Sequential/Surrogate-based RBDO:

• Break nesting: iterate between opt & UQ until target is met. Trust-region surrogate-based approach is non-heuristic.

minimize
$$f(\mathbf{d}_0) + \nabla_d f(\mathbf{d}_0)^T (\mathbf{d} - \mathbf{d}_0)$$

subject to $\beta(\mathbf{d}_0) + \nabla_d \beta(\mathbf{d}_0)^T (\mathbf{d} - \mathbf{d}_0) \ge \bar{\beta}$
 $\|\mathbf{d} - \mathbf{d}_0\|_{\infty} \le \Delta^k$

$$1^{\text{st}}\text{-order}$$
(also $2^{\text{nd}}\text{-order}, \dots$)

Outline

- Motivation
- DAKOTA toolkit overview
- Uncertainty quantification (UQ) forward propagation:
 - Sampling-based
 - Reliability analysis
- Enriching optimization with UQ
- Example problem MEMS
- Conclusion

Engineering Application Deployment: Shape Optimization of Compliant MEMS

- Micro-electromechanical system (MEMS) designs are subject to substantial variabilities and lack historical knowledge base
- Sources of uncertainty:
 - Material properties, manufactured geometries, residual stresses
 - Data can be obtained → aleatoric uncertainty, probabilistic approaches
- Resulting part yields can be low or have poor cycle durability
- Goals: shape optimization to...
 - Achieve prescribed reliability
 - Minimize sensitivity to uncertainties (robustness)
- Nonlinear FE simulations
 - − ~20 min. desktop simulation expense (SIERRA codes: Adagio, Aria, Andante)
 - Remeshing during shape design with FASTQ/CUBIT or smooth mesh movement with DDRIV
 - (semi-analytic) $p/\beta z$ gradients appear to be reliable

Bi-stable MEMS Switch

Bi-Stable Switch: Problem Formulation

simultaneously reliable AND robust designs

max
$$F_{min}(\mathbf{d}, \mathbf{\mu})$$

s.t. $2 \leq \beta(\mathbf{d})$
 $50 \leq F_{max}(\mathbf{d}, \mathbf{\mu}) \leq 150$
 $E_2(\mathbf{d}, \mathbf{\mu}) \leq 8$
 $S_{max}(\mathbf{d}, \mathbf{\mu}) \leq 1200$

2 random variables

variable	mean	std. dev.	distribution
Δw	-0.2 μm	0.08	normal
S_r	-11 Mpa	4.13	normal

Bi-Stable Switch: Results (DOT/MMFD)

lower	RBDO	upper	MVFOSM	MVFOSM	AMV+/FORM initial	AMV+/FORM
bound	metric	bound	initial	optimal		optimal
2 50	$F_{min} (\mu N)$ β $F_{max} (\mu N)$ $E_2 (\mu m)$ $S_{max} (MPa)$ Verified β	150 8 1200	-23.03 5.66 67.35 4.06 396 4.02	2.00 50.0 3.85 313 1.75	-23.03 4.02 67.35 4.06 396	-9.37 2.00 50.0 3.76 323

Reliability: target achieved for AMV+/FORM; target approximated for MV Robustness: variability in F_{min} reduced from 5.7 to 4.6 μ N per input σ [μ_{Fmin}/β] Ongoing: quantity of interest error estimates \rightarrow error-corrected UQ/RBDO

MVFOSMbased RBDO

AMV+/FORMbased RBDO

Conclusions

- Uncertainty-aware design optimization is helpful in engineering applications where robust and/or reliable designs are essential.
- The DAKOTA toolkit includes algorithms for uncertainty quantification and optimization of computational models.
- DAKOTA strategies enable combination of algorithms, use of surrogates and warm-starting, and leveraging massive parallelism.
- Advanced analytic reliability techniques may offer more refined estimates of uncertainty than sampling or mean value methods and may be more suitable in an optimization context.
- Further UQ and OPT capabilities are in development as is deployment to additional applications.

Thank you for your attention!

briadam@sandia.gov
http://endo.sandia.gov/DAKOTA

